Asian Journal of Chemistry Vol. 21, No. 10 (2009), S314-317 Measurements of L1 and L2 Subshell Fluorescence Yields for Dy at 22.6 keV Incident Photon Energy

ANIL KUMAR and SANJIV PURI University College of Engineering Punjabi University, Patiala-147002,(Punjab)

The L1 and L2 subshell fluorescence yields have been deduced from the measured cross sections for production of Ll, L α , L β 1,4, L β 3,6, L β 2,15,9,10,7, L γ 1,5 and L γ 2,3,4 x-rays of Dy66 at 22.6 keV incident photon energy. These measurements were performed using a sealed point (3mm ϕ) radioactive source of Cd109 (20 mCi) as a photon source and Peltier cooled x-ray detector arranged in reflection geometry. The present deduced values of fluorescence yields are compared with the DHS model based theoretical values, the semiempirical values, and those recommended by Campbell.

INTRODUCTION

Reliable accurate data on the L shell fluorescence and Coster-Kronig yields are required for a variety of applications such as radiation shielding, radiation transport and mass-attenuation calculations, dosimetric computations, and the quantitative elemental analysis using x-ray emission techniques (EDXRF and PIXE).

Three sets of the $L_i(i=1-3)$ subshell fluorescence (ω_i) and Coster Kronig (f_{ij}) yields are available in literature. Puri et al.¹ reported a comprehensive set of the ω_i and f_{ij} yields for all the elements with $25 \le Z \le 96$ evaluated using the Dirac-Hartree-Slater (DHS) model based x-ray emission rates², and the non-radiative transition rates interpolated from the DHS model based data³ available for limited elements considering the onset / cut-off⁴ of different CK transitions. Krause⁵ tabulated a set of semi-empirical fitted values of ω_i and f_{ij} yields for all elements with $12 \le Z \le 110$ based on the experimental data available till 1979. Recently, Campbell^{6,7} provided a set of recommended values of the ω_i and f_{ij} yields for the elements with $62 \le Z \le 96$.

Only a limited number of measurements of the L_i subshell fluorescence yields for the rare-earth elements are available in literature. Xu et al [8] reported the ω_1 and ω_2 yields deduced from the L x-ray spectra of ${}_{57}La$, ${}_{60}Nd$, ${}_{66}Dy$, ${}_{70}Yb$ and ${}_{71}Lu$ elements induced by 2 MeV proton beam. It may be mentioned that the measured fluorescence yields reported by Xu et al ⁸ strongly depend on the theoretical $L_i(i=1-3)$ subshell Coster-Kronig yields (f_{12} , f_{13} and f_{23}) and the x-ray emission rates.

In the present investigations, the L_1 and L_2 subshell fluorescence yields have been deduced for ₆₆Dy elements from the $L_k(k=1, \alpha, \beta_{1,4}, \beta_{3,6}, \beta_{2,15,9,10,7}, \gamma_{1,5} \text{ and } \gamma_{2,3,4})$

Asian J.Chem.

x-ray production (XRP) cross sections measured at 22.6 keV incident photon energy. The deduced fluorescence yields have been compared with the theoretical values¹, semidata⁸.

EXPERIMENTAL PROCEDURES

The experimental setup used for present measurements consists of a sealed point (3mm ϕ) radioactive source of Cd¹⁰⁹ (20 mCi) as a photon source and Peltier cooled x-ray detector (FWHM 155eV at 5.9 keV) arranged in reflection geometry. Spectroscopically pure self-supporting pressed pellet of Dy₂O₃ of thicknesses ~103 mg/cm² was used as target. To reduce the statistical error in measurements, three spectra were recorded for time intervals ranging 30-35 hrs.

The experimental $Lk(k=1, \alpha, \beta_{1,4}, \beta_{3,6}, \beta_{2,15,9,10,7}, \gamma_{1,5} \text{ and } \gamma_{2,3,4})$ XRP cross sections, $\boldsymbol{\sigma}_{Lk}^{x}$, at incident photon energy $E_{inc}(=22.6 \text{ keV})$ have been evaluated using the relation

 $\sigma_{Lk}^{x} = N_{Lk} / (I_{o} G \varepsilon \beta_{Lk} m)$ (1)

where N_{Lk} is the number of counts per unit time under the Lk photopeak, IoG is the intensity of the incident radiation falling on the area of the target visible to the detector, ε is the detector efficiency, m is the mass thickness (g/cm²) of the target element under investigation, and β_{Lk} is the self-absorption correction factor which accounts for the absorption of incident and emitted photons in the target. The values of β_{Lk} have been calculated as explained in our earlier paper [9] and were found to be in the range (0.0424-0.0913) for the target under investigation. Each spectrum was analyzed for photo-peak areas (N_{Lk}) using commercial software package "Origin" as explained in our earlier paper [9]. The L β and L γ groups of x-rays have been resolved into components (L $\beta_{1,4}$, L $\beta_{3,6}$ and L $\beta_{2,7,159,10}$) and (L $\gamma_{1,5}$, L $\gamma_{2,3}$ and L γ_4), respectively, by fitting procedures as shown in Fig. 1.

The product, IoGewas determined by measuring the K x-ray yields from targets of $K_2Cr_2O_7$, MnO₂, Co(NO₃)₂.6H₂O, NiCl₂.6H₂O, CuO, ZnSO₄.7H₂O, As₂O₃, Se, SrCO₃, MoO₃ in the same experimental setup as used for the Lk XRP cross section measurements and using Eq. (1), but for the K α x-rays rather than the Lk x-rays. The details are given elsewhere⁹. The L₁ and L₂ subshell fluorescence yields have been deduced from the present measured Lk XRP cross sections as explained in our earlier paper⁹.

RESULTS AND DISCUSSION

The present measured $L_k(k=1, \alpha, \beta_{1,4}, \beta_{3,6}, \beta_{2,15,9,10,7}, \gamma_{1,5} \text{ and } \gamma_{2,3,4})$ XRP cross sections, $\sigma_{Lk}^x(exp)$, for ₆₆Dy are listed in Table1. The overall error in the present measured cross sections is estimated to be 6-9%. The present measured $\sigma_{Lk}^x(exp)$ values are compared with the three sets of calculated, $\sigma_{Lk}^x(DHS)$,

Vol. 21, No. 10 (2009)

 σ_{1k}^{x} (Kr.) and σ_{1k}^{x} (Camp) (k=l, α , $\beta_{1,4}$, $\beta_{3,6}$, $\beta_{2,15,9,10,7}$, $\gamma_{1,5}$ and $\gamma_{2,3,4}$) values in Table 1. The σ_{Lk}^{x} (DHS) values are, on an average, higher than the σ_{Lk}^{x} (Kr.) values by ~11% for the Ll, L α , L $\beta_{1,4}$, L $\beta_{2,15,9,10,7}$, L $\gamma_{1,5}$ groups of x-rays and by ~4% for the L $\beta_{3,6}$, L $\gamma_{2,3,4}$, groups of x-rays, respectively. The σ_{1k}^{x} (Camp) are, on an average, higher than the σ_{1k}^{x} (Kr.) values by ~15% for the L $\beta_{3,6}$, L $\gamma_{2,3,4}$ groups of x-rays, by ~9% for the L $\beta_{1,4}$, and L $\gamma_{1,5}$ groups of x-rays and by ~4% for the Ll, L α and L $\beta_{2,15,9,10,7}$ groups of x-rays, respectively. The σ_{Lk}^x (DHS) values are, on an average, higher than the σ_{1k}^{x} (Camp) values by ~5% for the Ll, L α and $L\beta_{2,15,9,10,7}$ groups of x-rays, by ~2-4% for the $L\beta_{1,4}$, and $L\gamma_{1,5}$ groups of x-rays, and are lower than these values by ~9% for the $L\beta_{3,6}$ and $L\gamma_{2,3,4}$ groups of x-rays, respectively. The $\sigma_{Lk}^{x}(exp)$ values exhibit good agreement with the $\sigma_{Lk}^{x}(DHS)$ and σ_{1k}^{x} (Camp) values for all x-ray components except for L $\beta_{3,6}$ where the measured value is higher than DHS value by ~34% and 21%, respectively. The measured values are higher than the $\sigma_{Lk}^x(Kr.)$ values by ~8-36% for different xray components. The present deduced $\omega_l(exp)$ and $\omega_2(exp)$ values are compared with the three sets ^{1,5,6} of available values and earlier measured values ⁸ in Table 2 and Table 3, respectively. The three sets of available ω_1 and ω_2 values ^{1,5,6,7} differ from each other

Table 1: The present measured and three sets of calculated $L_k(k=l, \alpha, \beta_{1,4}, \beta_{3,6}, \beta_{2,15,9,10,7}, \gamma_{1,5} \text{ and } \gamma_{2,3,4})$ XRP cross sections (σ_{Lk}^x ; barns/atom) for ₆₆Dy.

		$\sigma_{Lk}^{x}(exp)$	$\sigma_{Lk}^{x}(DHS)$	$\sigma_{Lk}^{x}(Kr.)$	σ_{Lk}^{x} (Camp)			
	X-ray (subshell)	66Dy						
	Ll (L ₃)	24.8 (14)	24.55	22.5	23.09			
	*La (L ₃)	609 (36)	595.1	544.5	560.4			
	$L\beta_{1,4}(L_2, L_1)$	444 (27)	450.8	403.1	447.3			
	$L\beta_{3,6}(L_1, L_3)$	135 (12)	100.9	98.40	110.1			
	$L\beta_{2,7,15,9,10}(L_3, L_1)$	109 (7)	108.6	99.81	102.8			
	$L\beta$ (L1, L ₂ , L ₃)	687 (41)	657.1	601.3	660.2			
	$L\gamma_{1,5}(L_2)$	71.4 (45)	74.22	65.28	72.25			
	$L\gamma_{2,3,4}(L_1)$	47.3 (34)	47.06	46.02	51.71			
	$L\gamma$ (L_1 , L_2)	119 (9)	121.3	111.3	123.9			
* Al	l values include the	cross section	s for Lŋ x-ray	line.				
Table 2: The L ₁ subshell fluorescence yields (ω_1) for $_{66}$ Dy.								
	Z 🛛 (exp)	w1(DHS)	ω _l (Kr.)	ω ₁ (Camp.)	Others work			
f	6 0 116(9)	0.091	0.089	0.100	$0.109(13)^8$			

Table 3:	he L ₂ subshell fluorescence yields (ω_2) for $_{66}$ Dy.	

Z	ω₂(exp)	w ₂ (DHS)	ω 2(Kr.)	ω ₁ (Camp.)	Others work
66	0.187(16)^	0.197	0.178	0.197	$0.190(19)^8$
	0.192(16)*				

Figure 1(a): A plot of the fitted L γ x-ray components (L $\gamma_{1,5}$, L $\gamma_{2,3}$, L γ_4) of ₆₆Dy along with the residue.

Figure 1(b): A plot of the fitted $L\beta$ x-ray components ($L\beta_1$, $L\beta_4$, $L\beta_{3,6}$, $L\beta_{2,15,9,10,7}$) of ₆₆Dy along with the residue.

by ~3-11%. The present deduced ω_1 value is higher by 16%, 24% and 30% than the Campbell's value ^{6,7}, the DHS value¹ and that of Krause's ⁵ value, respectively, and agree well with the earlier measured⁸ value. The present deduced $\omega_2(exp)$ values are found to be in general agreement with the available three sets of values and exhibited excellent agreement with the earlier measured⁸ value.

ACKNOWLEDGEMENTS

One of the authors, S. Puri wishes to acknowledge the financial assistance from DST, N. Delhi in form a research project sanction in year 2007 for a period of three years.

REFERENCES

- 1. Sanjiv Puri, D.Mehta, B.Chand, M.L. Garg, N. Singh and P.N. Trehan, X-ray Spectrometry 22 (1993) 358.
- 2. J.H. Scofield, At. Data Nucl. Data Tables 14 (1974) 121.
- 3. M.H. Chen, B. Crasemann and H. Mark, At. Data Nucl. Data Tables 24 (1979)13.
- 4. M.H. Chen, B. Crasemann, K. Huang, M. Aoyagi and H. Mark, *At. Data and Nucl. Data Tables* **19** (1977) 97.
- 5. M.O. Krause, J. Phys. Chem. Ref. Data 8 (1979) 307.
- 6. J.L. Campbell. At. Data and Nucl. Data Tables 85 (2003)291.
- 7. J.L. Campbell. At. Data and Nucl. Data Tables 95 (2009) 115.
- 8. J.Q. Xu and X.J. Xu, Phys. Rev. A 49 (1994) 2191.
- 9. Y. Chauhan, M.K. Tiwari and S. Puri. Nucl. Instrum. and Methds. B266 (2008) 30.