Vol. 21, No. 10 (2009), S246-249

Asian Journal of Chemistry

Energy, Charge and Z Dependence of Carbon (I.E.C+Q Where Q=1,2,3)Projectile Induced L Sub Shell X-Ray Intensity Ratios in Au, Tl, Bi, Th and U Elements

BALTEJ SINGH SIDHU*, MANOJ KUMAR GUPTA, K. S. MANN, K. S. KAHLON and A. S. DHALIWAL Department of Physics, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur-148106, Punjab, India E-mail:baltejsliet@gmail.com

Energy, charge and Z dependence of L shell X-ray intensity ratios in the energy range 0.9 MeV to 15 MeV has been investigated in Au, Tl, Bi, Th and U for incident carbon (i.e. C^{+q} where q=1,2,3)

projectile. The intensity ratios $\frac{I_l}{I_{\gamma}}$, $\frac{I_{\alpha}}{I_{\gamma}}$ and $\frac{I_{\beta}}{I_{\gamma}}$ first decreases with increase in energy, attain minimum value and then start increasing. The minimum value of $\frac{I_l}{I_{\gamma}}$ and $\frac{I_{\alpha}}{I_{\gamma}}$ falls in the energy range (0.9MeV to 3MeV) and of $\frac{I_{\beta}}{I_{\gamma}}$ in the energy range 6MeV to 15MeV for all elements. It has also been investigated that for a particular energy and Z, values of $\frac{I_l}{I_{\gamma}}$, $\frac{I_{\alpha}}{I_{\gamma}}$ and $\frac{I_{\beta}}{I_{\gamma}}$ increases with decrease in value of charge (q). Similarly for particular energy and charge, values of $\frac{I_l}{I_{\gamma}}$, $\frac{I_{\alpha}}{I_{\gamma}}$ and $\frac{I_{\beta}}{I_{\gamma}}$ increases with increase in Z value. Also a comparison has been made among the

increase in Z value. Also a comparison has been made among the intensity ratios evaluated using two different sets of parameters i.e. (fluorescence yield ω_i where i=1,2,3 for L₁, L₂ and L₃ sub shells and Coster Kronig transitions f_{ij} where i,j=1,2,3 for L₁, L₂ and L₃ sub shells) given by Krause et al and Campbell.

Key Words: Ion atom collision, Intensity ratio, Carbon projectile

INTRODUCTION

The determination of L x-ray intensity ratios produced by the filling of inner shell vacancies has been the subject of extensive study during the last few S247 Sidhu et al.

decades. The x-ray-emission cross-section for charged particle induced emission is approximately proportional¹ to Z^2 . So, it is worthwhile to investigate energy, charge and Z dependence of carbon (i.e. C^{+q} where q=1, 2, 3) projectile induced L Sub shell X-ray intensity ratios in Au, Tl, Bi, Th and U elements

In recent past role of Coster-Kronig transitions in emission of L x-ray lines have been investigated by many workers^{2,7}. It is concluded from these results that these non-radiative transitions change the initial x-rays emission parameters to a considerable extent. All these works are limited to the photon, proton and deuteron induced X-ray emission only, while the alteration brought about by the presence of CK transitions in case of L sub shell x-rays emission cross- sections induced by heavy ions, particularly carbon projectile still needs to be investigated.

In this communication energy, charge and Z dependence of L sub shell Xray intensity ratios for incident carbon (i.e. C^{+q} where q=1,2,3) projectile in the energy range 0.9 MeV to 15 MeV has been investigated in Au, Tl, Bi, Th and U. Also a comparison has been made among the intensity ratios evaluated using two different sets of parameters i.e. (fluorescence yield ω_i where i=1,2,3 for L₁, L₂ and L₃ sub shells and Coster Kronig transitions, f_{ij} where i,j=1,2,3 for L₁, L₂ and L₃ sub shells) given by Campbell⁸ and Krause et.al⁹

THEORETICAL CALCULATIONS OF INTENSITY RATIOS

The L sub shell X-ray production cross sections σL_1 , σL_{α} , σL_{β} and σL_{γ} for carbon projectile (i.e C^{+q} q= 0,1,2,3) can be evaluated by using the following relations :

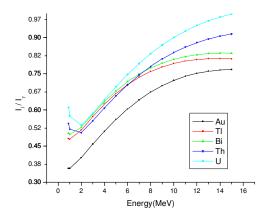
$$\sigma L_{l} = \left[\left(\sigma L_{1} + \sigma K \, n_{KL_{1}} \right) \left(f_{12} f_{23} + f_{13} \right) + \left(\sigma L_{2} + \sigma K \, n_{KL_{2}} \right) f_{23} + \left(\sigma L_{3} + \sigma K \, n_{KL_{3}} \right) \right] w_{3} F_{3l}$$
(1)
$$\sigma L_{\alpha} = \left[\left(\sigma L_{1} + \sigma K \, n_{KL_{1}} \right) \left(f_{12} f_{23} + f_{13} \right) + \left(\sigma L_{2} + \sigma K \, n_{KL_{2}} \right) f_{23} + \left(\sigma L_{3} + \sigma K \, n_{KL_{3}} \right) \right] w_{3} F_{3\alpha}$$
(2)

$$\sigma L_{\beta} = (\sigma L_{1} + \sigma K n_{KL_{1}}) w_{1} F_{1\beta} + [(\sigma L_{1} + \sigma K n_{KL_{1}}) f_{12} + (\sigma L_{2} + \sigma K n_{KL_{2}})] w_{2} F_{2\beta} + [(\sigma L_{1} + \sigma K n_{KL_{1}}) (f_{12} f_{23} + f_{13}) + (\sigma L_{2} + \sigma K n_{KL_{2}}) f_{23} + (\sigma L_{3} + \sigma K n_{KL_{3}})] w_{3} F_{3\beta} (3)$$

$$\sigma L_{\gamma} = (\sigma L_{1} + \sigma K n_{KL_{1}}) w_{1} F_{1\gamma} + [(\sigma L_{1} + \sigma K n_{KL_{1}}) f_{12} + (\sigma L_{2} + \sigma K n_{KL_{2}})] w_{2} F_{2\gamma} (4)$$

From these relations L sub shell intensity ratios can be calculated as given below:

$$\frac{I_{l}}{I_{\gamma}} = I(l,\gamma) = \frac{\sigma L_{l}}{\sigma L_{\gamma}}, \quad \frac{I_{\alpha}}{I_{\gamma}} = I(\alpha,\gamma) = \frac{\sigma L_{\alpha}}{\sigma L_{\gamma}} \quad \text{and} \quad \frac{I_{\beta}}{I_{\gamma}} = I(\beta,\gamma) = \frac{\sigma L_{\beta}}{\sigma L_{\gamma}}$$


Where σL_1 , $\sigma L_{\alpha} \quad \sigma L_{\beta}$ and σL_{γ} were given by equations (1), (2),(3) and (4) respectively. In above equations σL_1 , σL_{α} , σL_{β} and σL_{γ} are L shell x-rays production cross-sections. σL_1 , σL_2 and σL_3 are L sub shell ionization cross-

Vol. 21, No. 10 (2009)

sections and have been calculated using program developed by S Cipolla¹². $(F_{ij})^{10}$ is the fractional radiative decay rate for the x-ray vacancy in the Li (i=1, 2, 3) sub shell, $(n_{KLi})^{11}$ is the K to Li sub shell vacancy transfer probability. The f_{ij} 's (i $\neq j$, i=1,2, j=2,3) are the Coster-Kronig transition probabilities and ω_i 's (i=1,2,3) are the L sub shell fluorescence yields. Two alternative sets of fluorescence yields and CK transitions were used in present calculations. The first is widely cited review of Krause et al⁹ which has been employed to interpret the great majority of work on light ion-induced x-ray cross sections. The second set is the more recent review by Campbell⁸.

RESULT AND DISCUSSION

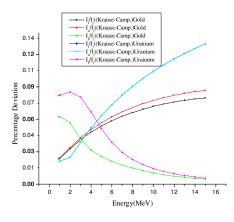

The intensity ratios have been calculated for incident carbon (i.e. C^{+q} where q=0,1,2,3) projectile at 0.9 MeV to 15 MeV. The typical plot is shown in fig. 1, it is observed that the value of intensity ratio $I(l,\gamma)$ first decreases, attain a minimum value (e.g for Au value is 0.36 and for U value is 0.54) and then starts increasing gradually. Similar trends were seen in case of $I(\alpha, \gamma)$ and $I(\beta, \gamma)$ intensity ratios also. Energy at which Intensity ratio attain minimum value increases with increase in Z value (e.g. for Au minimum value of $I(l,\gamma)$ occur at 0.9 MeV and for U minimum value of $I(l,\gamma)$ occur at 2 MeV). It was observed that the intensity ratios $I(l,\gamma)$, $I(\alpha,\gamma)$ and $I(\beta,\gamma)$, show only small variation if we change the charge of incident projectile(i.e. C^{+q} q=0,1,2, 3).

Fig.1. Variation of Intensity ratios $\frac{I_i}{I\gamma}$ with energy (MeV) for Au, Tl, Bi, Th and U for C⁺³ projectile (f's and ω 's given by Campbell⁸ have been used).

S249 Sidhu et al.

Percentage variation in L shell X-ray intensity ratios were also calculated using the values of CK transition probabilities and fluorescence yields given by Krause et al⁸ and Campbell⁹. Typical plot is shown in fig.2. It was observed that there were irregular trends when these results were compared with one another. The maximum percentage deviation observed was around 13% for the intensity ratio $I(\beta, \gamma)$ in Uranium.

Fig.2. Percentage variation in the value Intensity ratios $\frac{I_l}{I\gamma}$, $\frac{I_{\alpha}}{I\gamma}$ and $\frac{I_{\beta}}{I\gamma}$ for Gold and Uranium with carbon(C^{+q} i.e q=0,1,2,3) projectile.

REFERENCES

- 1. C.W.Lewis, J.B. Matowitz, R.L. Watson, Phys. Rev.Lett. 26, 481(1971)
- K.L Allawadhi , B.S Sood, R Mittal , N Singh, J.K. Sharma, X-ray Spectrom. 25, 233(1996).
- 3. A.Rani, N.Nath, S.N Chaturvedi, X-ray Spectrom. 18, 77(1989).
- O. Sogut, E.Buyukkasap, M.Ertugrul, A. Kucukonder, J. Quant. Spectrosc Radiat. Transfer 74, 395 (2002).
- 5. E.Oz, N.Ekinci, M. Ertugrul, Y.Sahin, , X-ray Spectrom. 32, 153(2003).
- 6. E. Oz, M.Ertugrul, Y.Sahin, Rad. Phy. and Chem. 69, 17(2004).
- 7. R. Thakkar, B.Sharma, K.L. Allawadhi, Rad. Phy. and Chem. 75, 1482 (2005).
- 8. 8. J.L. Campbell, At. Data Nucl. Data Tables 85, 291(2003)
- 9. M.O. Krause, C.W. Jr. Nestor, C.J. Jr. Sparks, E.Ricci, report no. ORNL-5399(1978).
- 10. V. Rao, M.H. Chen, B.Crasemann, Phys. Rev. A 5, 997 (1972).
- 11. J.H. Scofield, At. Data Nucl. Data Tables 14, 121(1974).
- 12. S. Cipolla, Computer Physics Communication, 176,157(2007).